

Alternate Energies
BESS - Stationary
Storage

August 2021

Agenda

03	Acronyms
04	Foreword
05	Key takeaways
06	Alternate Energies-Stationary Storage
	Introduction
	Indian and global trends
	Cost economics
	Use case comparison
	Business models
	Policy measures
	Barriers
	Energy & Utilities – our capabilities
20	Specific practitioner expertise
21	About Praxis

Acronyms

Acronyms	Description
AC	Alternate Current
BESS	Battery Enabled Storage Systems
BoS	Balance of System
C&I	Commercial and Industrial Customers
CAGR	Compounded Annual Growth Rate
DC	Direct Current
DG	Diesel Gensets/Generator
DISCOM	Distribution Company
ESS	Energy Storage Systems
GENCO	Generation Company
GWh	Giga Watt hour
IPP	Independent Power Producers
ISO	Independent System Operator

Acronyms	Description
KfW	Kreditanstalt für Wiederaufbau (German funding agency)
LFP batteries	Lithium Iron Phosphate
NCM batteries	Nickel Manganese Cobalt
NREL	National Renewable Energy Laboratory
OEM	Original Equipment Manufacturers
PLI	Performance Linked Incentive
PV	Photovoltaic
R&D	Research & Development
RE	Renewable Energy
RTO	Regional Transmission Organization
T&D	Transmission & Distribution
TCO	Total Cost of Ownership

Foreword

The aftereffects of COVID-19 pandemic have been wide and large. The pandemic has already affected the economy severely. Although the recovery is going to be a long-drawn and hard-fought process, Indian economy is resilient and shall bounce back.

This report is intended to provide, various industry stakeholders including business leaders, an overall perspective on the key trends in the energy storage market and emerging opportunities as the economy was on the path of recovery post the last year lockdown. However, since then the market has witnessed up and down swings and the second wave has curtailed the energy storage push to a certain extend.

While our report is fairly COVID-19 agnostic and speaks about the trends and directions in the energy storage market, we have discussed the use cases for energy storage at a stationary battery enabled storage system level. We discuss about the various electricity storage

technologies globally and the application of battery enabled Stationary Storage system.

Further we discuss about within batteries how lithium ion batteries are the key energy storage batteries currently and how their chemistries are evolving, particularly in case of NCM and LFP battery chemistries and how their price movement is determining the overall price for energy storage in the future and subsequently the overall cost of electricity.

We also talk about the evolving business models for energy storage across utility and end users and the various policies and directions by the government overall. Finally, we do highlight the barriers which are slowing the growth of stationary BESS in India.

We, at Praxis, look forward to continuing the discussion with our friends across sectors and exchanging notes as the situation evolves.

Way

Madhur Singhal

Managing Partner & CEO

Aryaman Tandon

Managing Partner & Co-Founder

Key takeaways

Stationary Storage market

- India is expected to lead the battery storage market over the next 10-15 years due to robust solar energy generation integration and strong end-customer demand
- TCO for both Li-ion chemistries (LFP and NCM batteries) are expected to witness a significant decline over the next decade
 - LFP batteries: Solar power + BESS tariff for electricity stored in LFP batteries are expected to range between INR 7.0 – INR 7.7 by 2030
 - NCM batteries: Solar power + BESS tariff for electricity stored in NCM batteries are expected to range between INR 7.8 – INR 8.7 by 2030
- Both utility-scale and end-consumer models exist globally for battery storage; Utility-scale models target grid and large C&I customers
- BESS has a strong use case to minimize DG electricity; Falling battery prices have the potential to create a strong case to replace grid electricity with solar + BESS in the future

Introduction

There are 5 major categories of energy storage technologies globally; Li-ion batteries under BESS is one of the most used technologies of energy storage

Mechanical energy storage

Pumped Hydro Energy Storage (PHES)

Compressed Air Energy Storage (CAED)

Flywheel Energy Storage

Electrochemical or BESS

Lead Acid Batteries, advanced Lead Acid Batteries

Lithium batteries (LCO, LFP, NMC, NCA, LTO)

Flow batteries (Vanadium redox, ZnBr)

Sodium batteries (NaS, NaNiCl₂)

Zinc batteries (ZnAir, ZnMnO₂)

Thermal energy storage

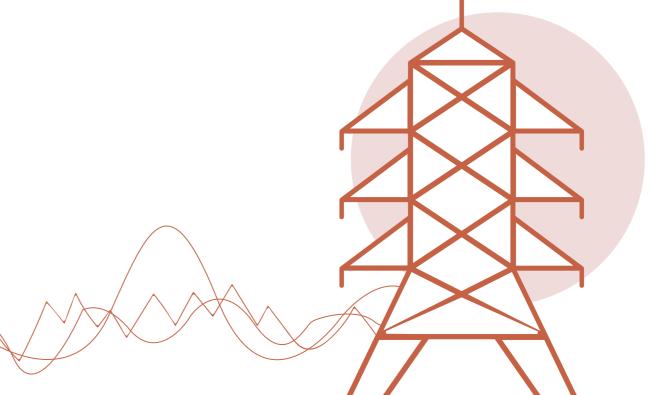
Sensible molten salt, Chilled water

Latent ice storage, Phase change materials

Thermochemical storage

Electrical energy storage

Super capacitors


Superconducting magnetic energy storage (SMES)

Chemical (hydrogen) energy storage

Power-to-power (fuel cells)

Power-to-gas

Most used technology

Applications for Li-ion based Battery Enables Storage Systems (BESS) across the spectrum

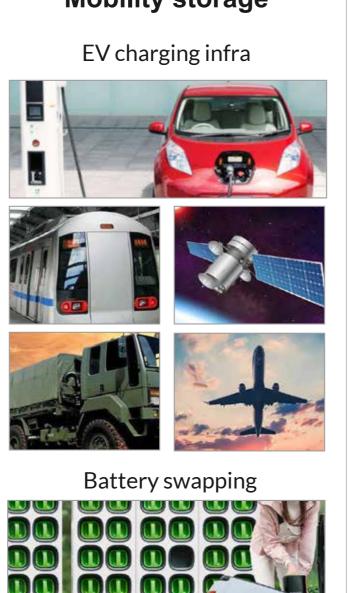
BESS applications (for Li-ion batteries)

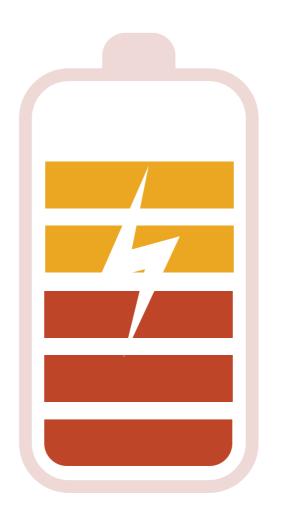
Industrial application

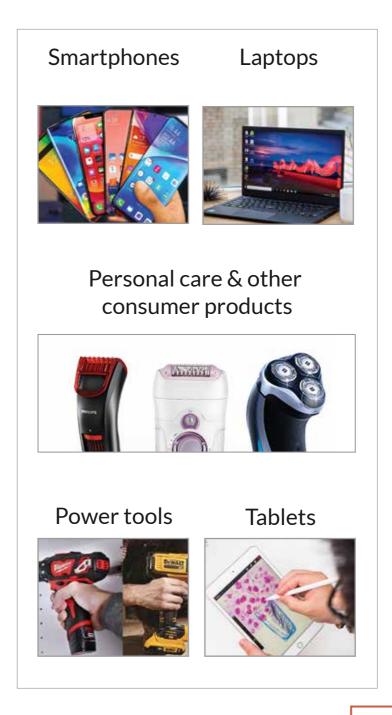
Mobility storage

Stationary Storage

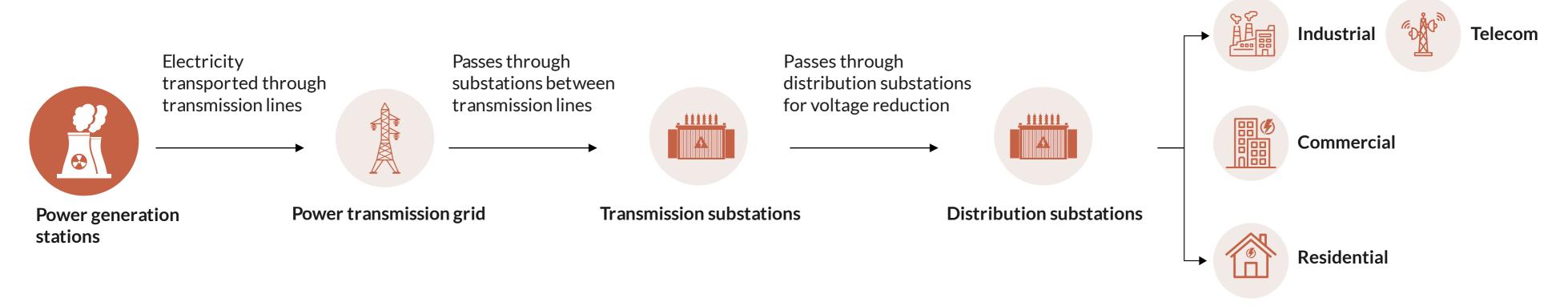
Electricity grid Telecom towers




Invertors



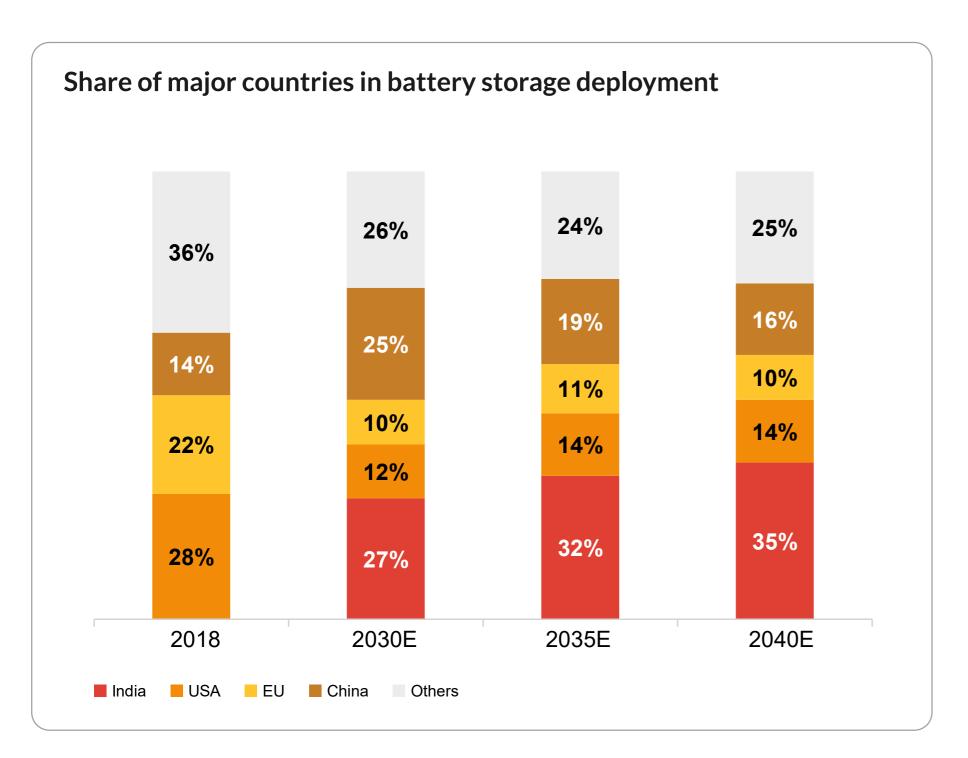
UPS



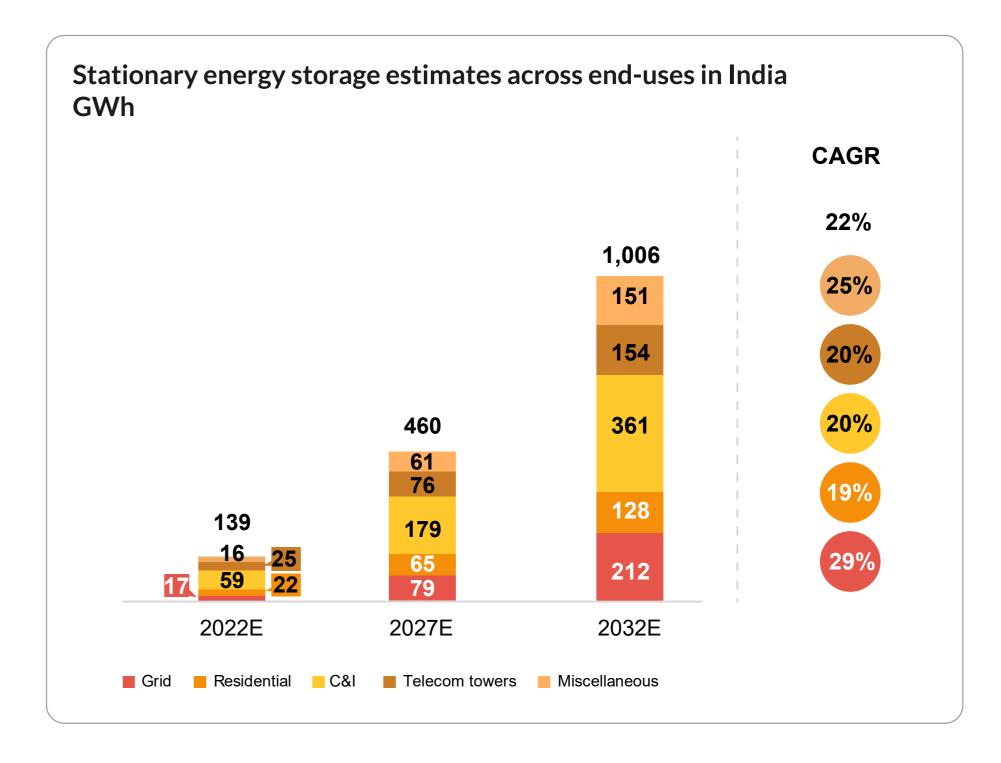
Consumer application

Introduction

Stationary Storage have application across Grid, C&I and residential categories, hence growing demand from these categories would increase Stationary Storage capacity

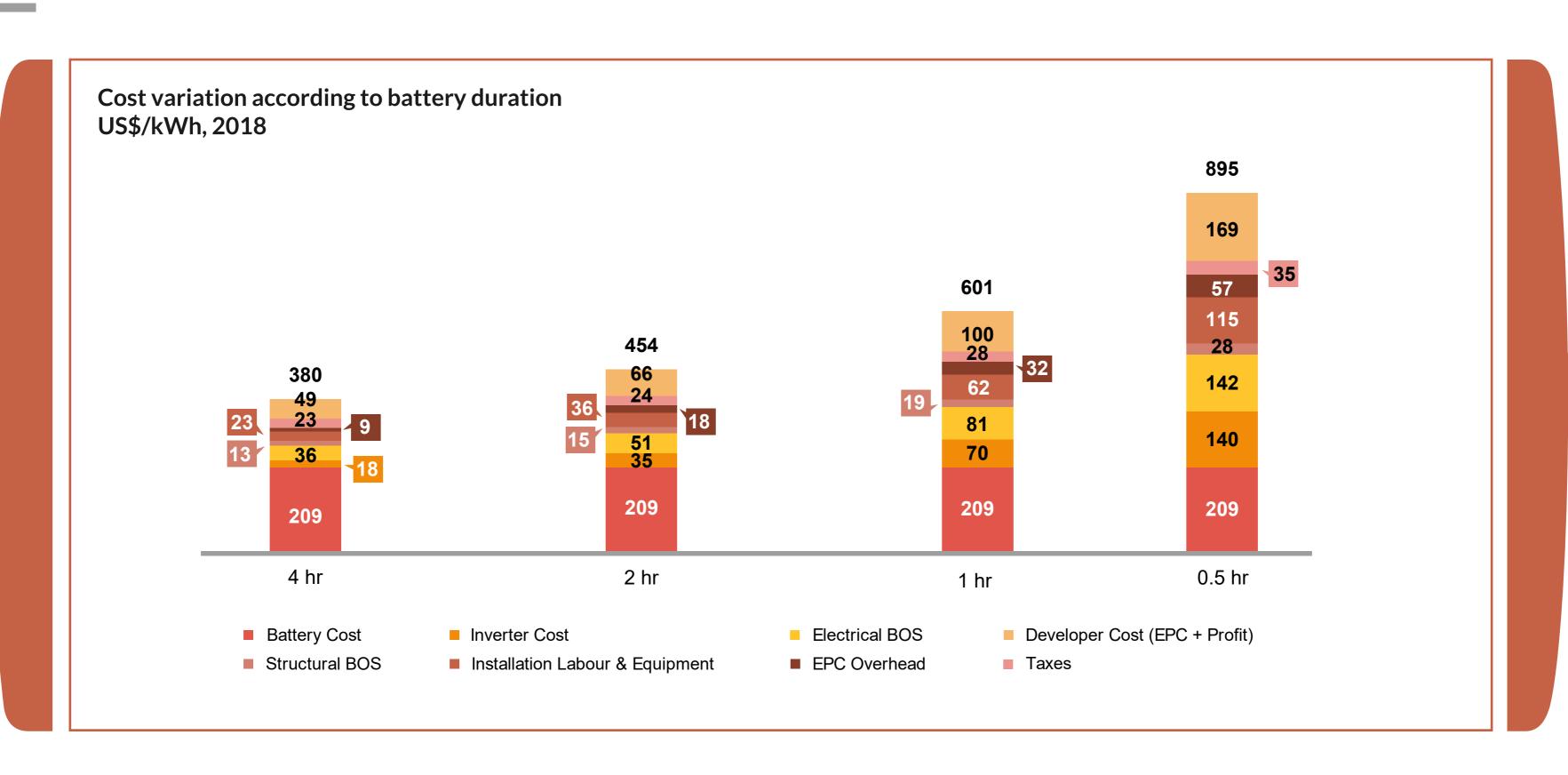

	Generation	Transmission and distribution	Residential, C&I end users
Asset owner	State generating companiesPrivate companies (IPPs)	 Transmission companies (public and private) Distribution companies (public and private) 	End customers (C&I, residential, etc.)
Key applications and uses	 Capacity firming: Maintain intermittent power output Load leveling: Store power during off-peak hours and deliver during on-peak hours Frequency regulation: Charge/discharge in reply to increase/decrease in grid frequency Spinning reserve: Provide seconds-scale reserve to respond to outages 	 Voltage support: Protect against sharp increase or drop of voltage in grid Grid congestion reduction: Smoothen out the power transmission from peak to off-peak T&D capex deferral: Maintenance of adequate T&D capacity and defer the need for upgrade/capacity addition 	 Demand charge reduction: Lower charges due to lower grid electricity demand Backup power: Adequate backup for power cuts DG use minimization: Decreased diesel consumption for DG Decreased diesel consumption & diesel usage Ability to store solar-generated electricity for later use

Sources: Secondary research, Praxis analysis

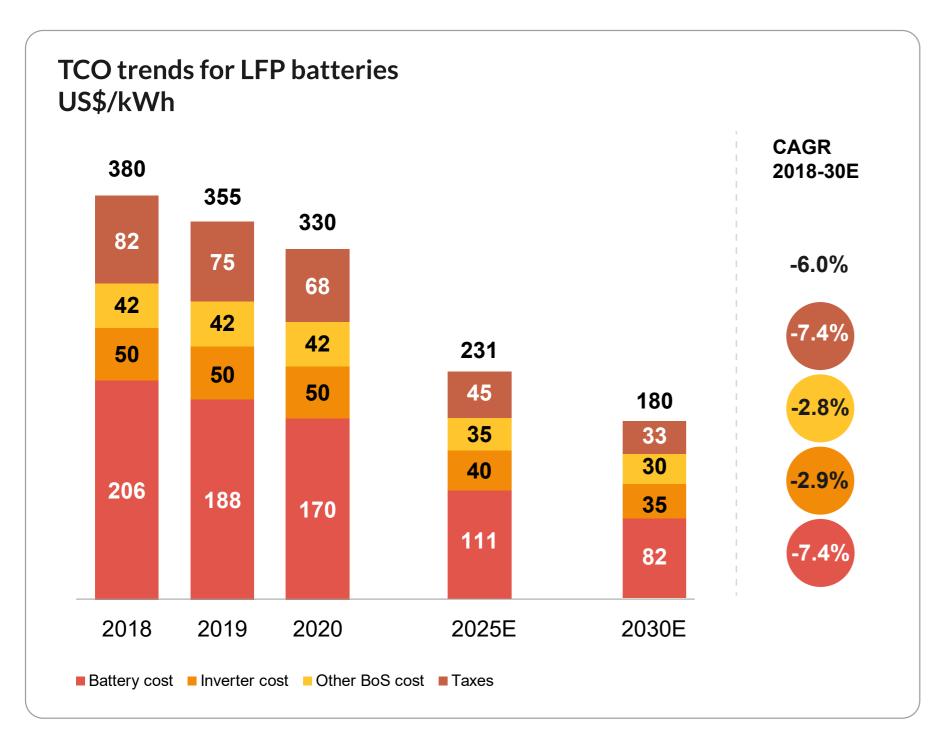

Indian and global trends

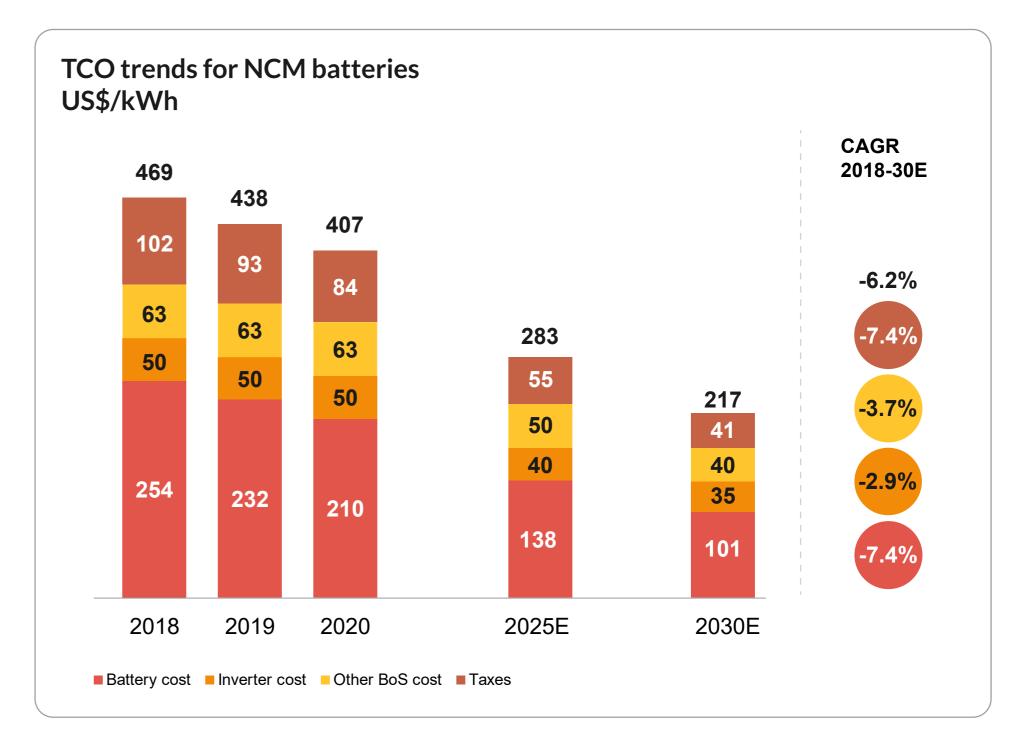
India is expected to lead the battery storage market over the long term on the back of robust solar energy generation targets and strong end-customer demand

India is expected to contribute to 35% of the total global battery deployment for energy storage by 2040



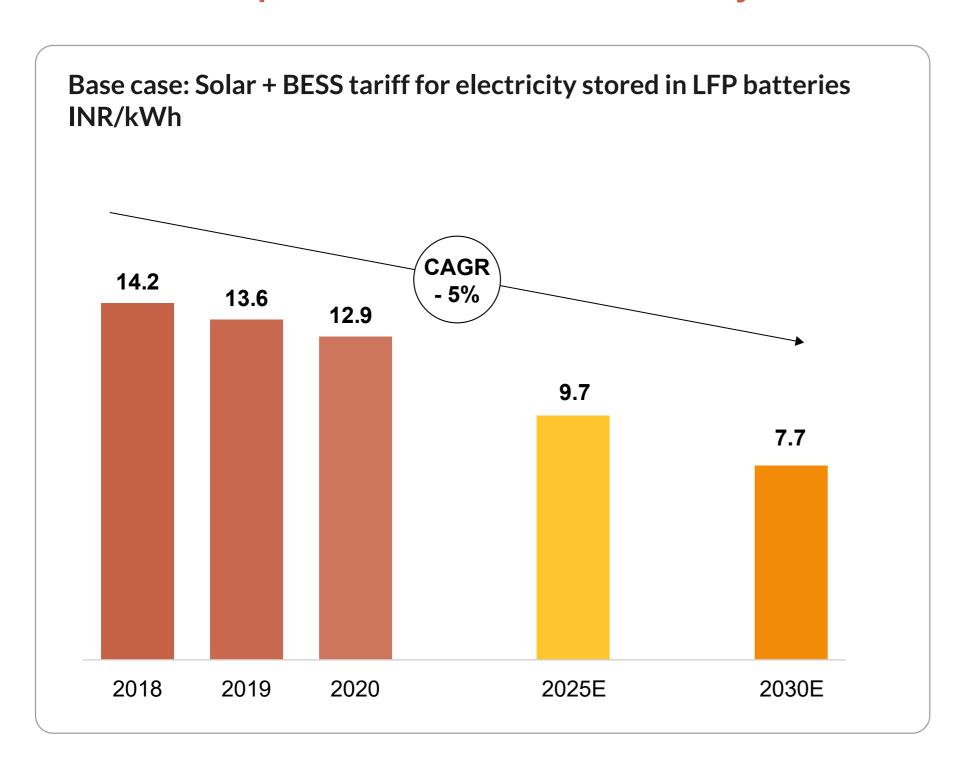
Stationary energy storage requirement is expected to grow 9X over 2022-32, at 22% CAGR

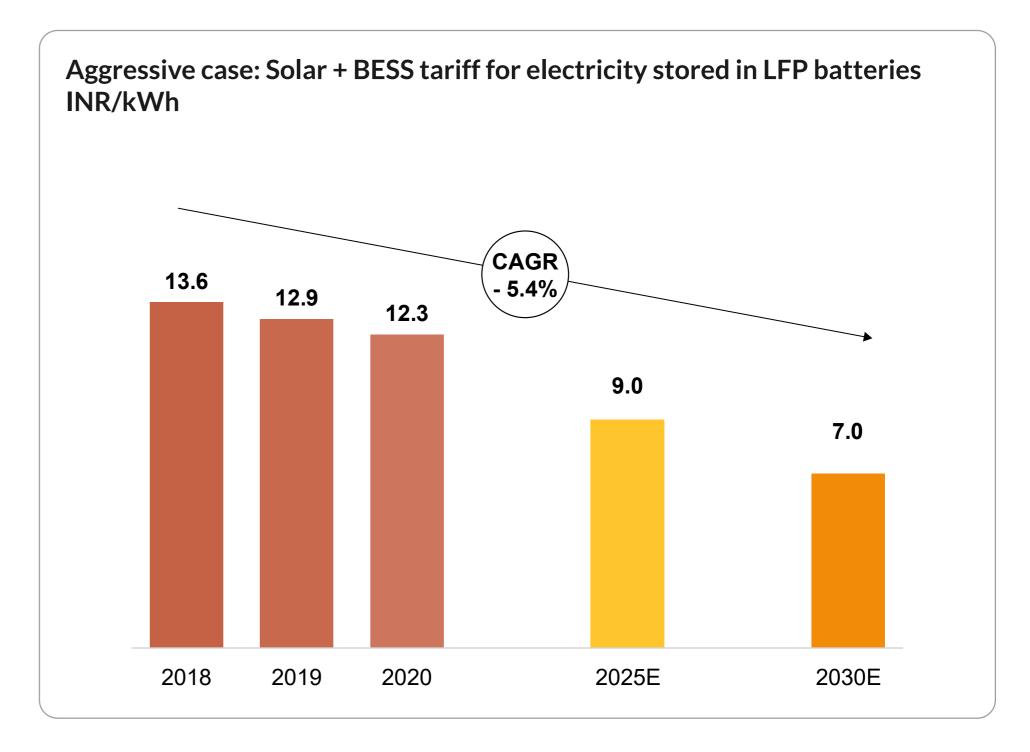

Li-ion batteries cost vary as per the usage requirements - Cost economics witness significant increase while moving from 4hr battery to 0.5hr battery



TCO for both Li-ion batteries (LFP and NCM) are expected to witness a significant decline over the next decade

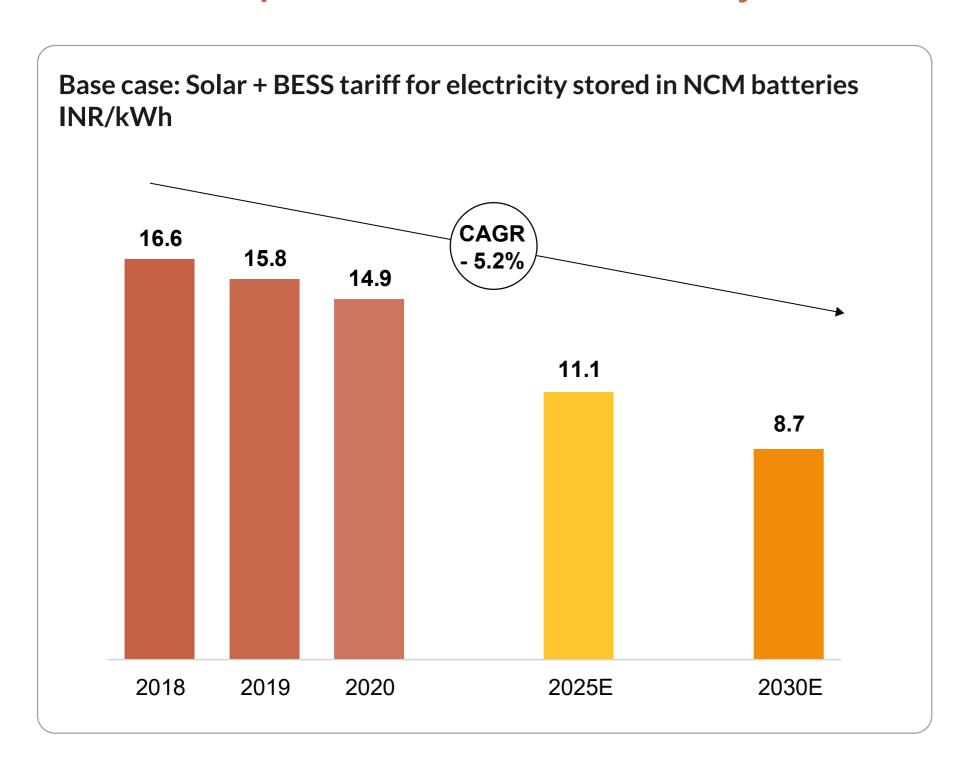
TCO of LFP batteries is expected to decline from US\$ 380/kWh to US\$ 180/kWh

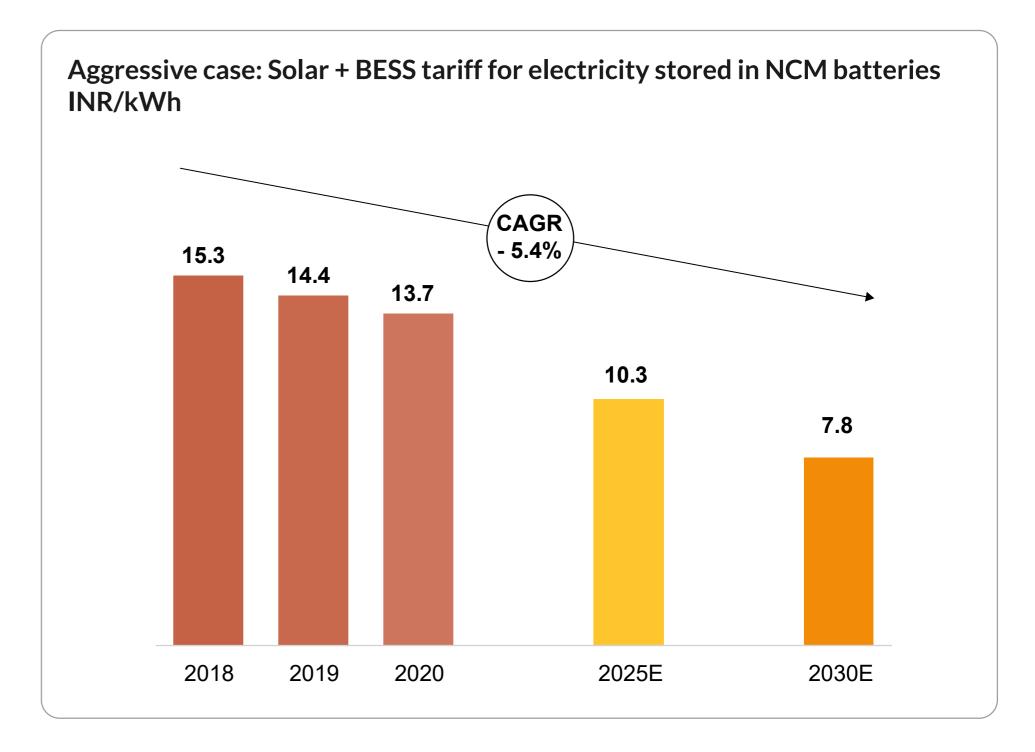

TCO of NCM batteries is expected to decline from US\$ 469/kWh to US\$ 217/kWh



LFP batteries: Solar + BESS tariff for electricity stored in LFP batteries is expected to range between INR 7.0 - INR 7.7 (US\$ 0.09 - 0.10) per unit by 2030

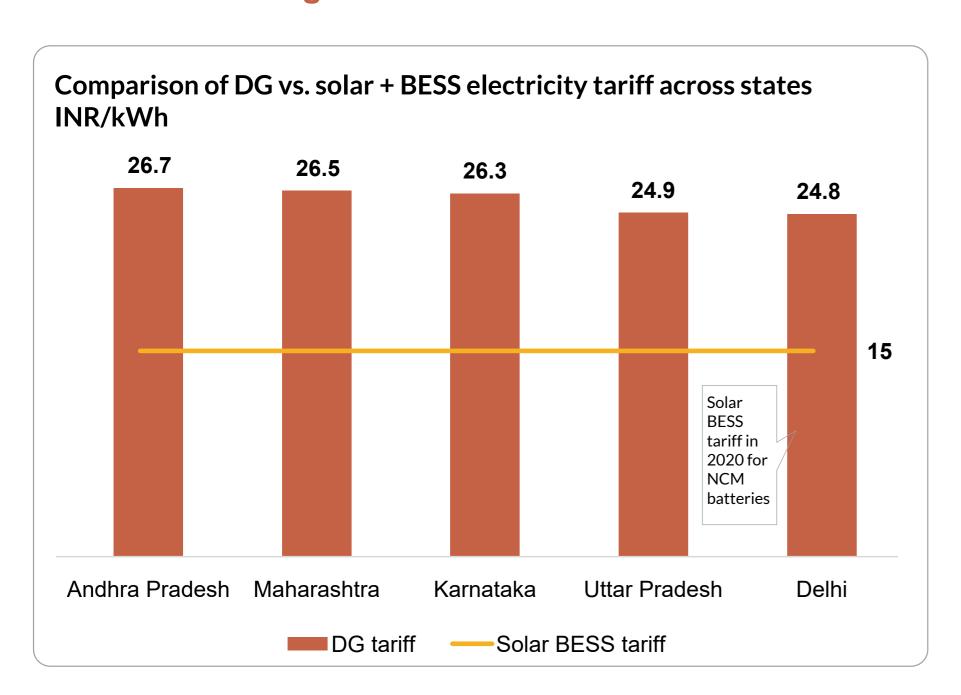
In the base case scenario, electricity tariff for LFP batteries is expected to reach INR 7.7/kWh by 2030

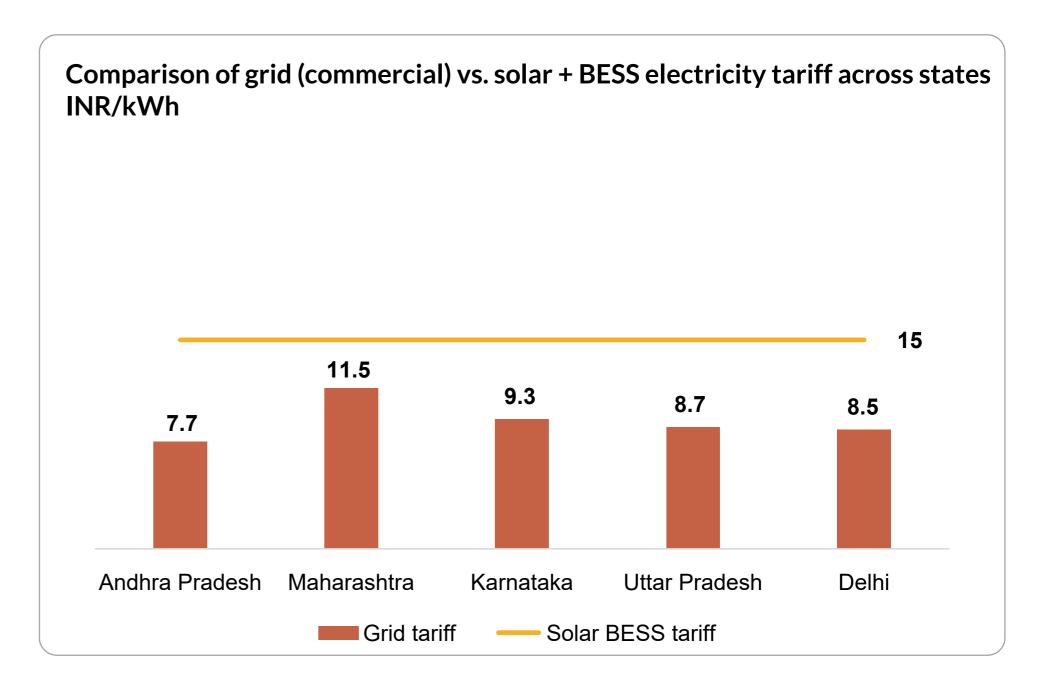

In the aggressive case scenario, electricity tariff for LFP batteries is expected to reach INR 7.0/kWh by 2030


Cost economics

NCM batteries: Solar + BESS tariff for electricity stored in NCM batteries is expected to range between INR 7.8 - INR 8.7 (US\$ 0.10 - 0.12) per unit by 2030

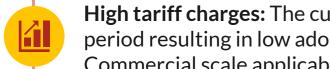
In the base case scenario, electricity tariff for NCM batteries is expected to reach INR 8.7/kWh by 2030


In the aggressive case scenario, electricity tariff for NCM batteries is expected to reach INR 7.8/kWh by 2030


Use case comparison

BESS has a strong use case to minimize DG electricity; Falling battery prices has the potential to create a strong case to replace grid electricity with solar + BESS in the future

Solar BESS electricity has the potential to significantly minimize DG usage due to its lower cost


Solar BESS electricity is still 2X costlier as compared to grid electricity

Renewable integration to grid along with Government support to push BESS growth; high capex and tariff are the key challenges faced

Challenges

High tariff charges: The current cost of battery storage is high and with a longer payback period resulting in low adoption of stationary battery storage and hence tariffs are higher. Commercial scale applicability is yet to be achieved.

High Capex for setting up Stationary Storage: There is a high initial cost required to set up a BESS which can impact the growth of BESS adoption.

Battery duration: The BESS storage duration ranges from 30mins to 4hrs, however in cases of power failures beyond 4hrs BESS may not make sense as well as would be costly. While there is a focus to increase the duration to 6hrs and 8hrs, these are still not on a commercial scale resulting in the need for redundancies.

Lack of standardization: On account of diverse technical requirements and different policy processes there is a lack of standardization within BESS. Each supplier has different tech specs which can be a hindrance to scale.

Charging BESS with thermal power: The prospects of charging BESS with thermal power would reduce the usage of BESS as energy storage is perceived to be green and in cohorts with renewable energy. This would have ESG issues and reduce investments in BESS.

Performance & safety: Various safety & security measures are needed for maintaining battery storage in C&I as well as residential areas which would mean additional cost and measures to be taken adding to existing procedures needed to be followed.

Opportunities

Energy storage benefits: The BESS can help on various aspects such as demand charge reduction, back-up power requirement, frequency regulation, grid congestion reduction, T&D Capex deferral, spinning reserve, decrease in diesel usage.

Government incentives and policy support: Central and State Governments are introducing policies and tenders for solar and wind energy along with the BESS component for the grid. Private players are focusing on pilot stage projects for BESS such as Tata Power.

Residential and C&I market: The usage of BESS to replace diesel gensets in commercial and industrial segments along with the residential segment is gaining significant traction. The use case makes commercial sense today with the cost of diesel being at an all-time high. Further within the UPS and Inverter market, usage of Li-ion batteries in BESS has been increasingly replacing the Lead Acid Batteries.

Renewable energy integration: With more and more renewable energy development, the grid is expected to see higher usage of renewable energy and hence intermittent power supply which can cause grid fluctuations. Hence the need for BESS is of paramount importance.

Fall price of BESS: With Giga scale factories envisaged globally and India also focussing on moving towards greener power and hence need for BESS, the price for BESS has been coming down, it has come down by 90% from the start of the last decade. This shows promising signs for greater adoption of BESS.

Business models

Both utility-scale and end-consumer models exist globally for battery storage; **Utility-scale models target grid and large C&I customers**

	Utility-scale model	End-use customer model		
	GENCO/IPP/DISCOM owned	Third-party owned and operated	End-user owned	Energy management contract
Asset owner	GENCO/IPP/DISCOM	Private third-party operators	Commercial and industrial establishment/residential	Energy management company
Customers	 Grid DISCOMs	 Commercial and industrial establishments Residential areas 	Commercial and industrial establishmentsResidential areas	Commercial and industrial establishments
Key features	 Long-term PPAs with customers Option to transfer the power to grid during any time (based on congestion in the grid) 	 No upfront capex for the end-customer Customers pay fixed monthly fee over the per kW consumption 	Asset completely owned by the end customer	Energy storage is a part of the overall long-term energy management contract
Business and revenue models	CapexOpex model	Opex modelLease model	Capex model	Opex shared savings modelOpex lease model
Benefits	 GENCOs can delay the capex cost for setting up new power plants Additional revenue stream for GENCO/IPP Improved grid reliability and performance through better management of T&D congestion 	 Reduced requirement of inverters/DG sets for the end customer Avoidance of load fluctuation 	 Reduced requirement of inverters/DG sets for the end customer Avoidance of load fluctuation 	Higher energy savings potential realized by ESCO for their customers, leading to increased revenue potential
Risks	 Lower PPA tariffs may impact long-term profitability Restriction on open-access for C&I customers in some states 	Asset owner can prioritize grid over the end-customer if it gets a better deal	Capex and opex to be borne by the end consumer (with no practical experience of maintaining such systems)	Higher risk for ESCO due to upfront capex

Governments globally are evolving their energy storage policies to support the industry; India needs to advance in terms of fiscal incentives compared to developed countries

Country		Policy measure	Description
		National Energy Storage Mission	The Government of India has created the draft National Energy Storage Mission to promote energy storage
		National Tariff Policy	Mandatory procurement of RE power for DISCOMs
	India		 Waiver on inter-state transmission charges for RE power transmitted through the grid to promote open access for large end customers
		 National Programme on Advanced Chemistry Cell Battery Storage 	 The Government approved INR 18,100 Crore PLI scheme for building manufacturing facilities for battery storage in India. The plan is to set up a 50 GWh manufacturing capacity
***** *****		Frequency regulation	 Each grid operator changes its regulation tariffs to pay resources based on the actual amount ofregulation service each resource provides to the grid, i.e. 'pay-for-performance'
**************************************	USA	RTO/ISO participation	Removal of all existing barriers for storage to participate in markets administered by RTO/ISO
		Tax incentive	 Investment tax credit expands to all energy storage systems, enabling more widespread deployment of energy storage
	Germany	KfW funding program	 Low-interest loans and repayment subsidies for new solar PV installations, which incorporate a fixed battery storage system, and for the retrofit of such systems to solar PV installations
	,		• Up to 100% of investment cost is available as debt for players interested in setting up such plants

Sources: PSR, Secondary research, Praxis analysis

Growth of advanced ESS requires a stimulus to reduce manufacturing cost and reliance on imports of raw materials

Barrier	Description	Impact
Reliance on imports	 Lack of raw material deposits for elements such as lithium etc. makes India significantly dependent on imports to support the battery manufacturing industry 	
Higher manufacturing cost	 Due to lower economies of scale, the overall per battery manufacturing cost is higher in India as compared to countries with a higher manufacturing base 	
	 Lack of incentives for manufacturers to set up units, however now with the PLI scheme in place this should ease out and witness more capacities coming up. 	
Restriction on open access	 Only end consumers with sanctioned load of 1MW and above are eligible to procure power through open access route 	
	 Few states try to limit purchase through open access to protect state-owned DISCOMs 	
Estimation of energy storage requirement	 Over-estimation or under-estimation of energy storage requirements leads to under-achievement of desired results in planned energy storage projects 	
Lack of skilled workforce	 Lack of skilled workforce in advanced battery manufacturing, as traditionally India has manufactured mainly Lead Acid Batteries 	
	Comprehensive training and re-skilling of workforce required	
Lack of secondary market for batteries	 No comprehensive framework for reuse and recycling of advanced energy storage technologies, leading to the absence of a secondary market for batteries 	•
Standards and testing	Lack of defined standards and testing protocols for local use of advanced energy storage technologies	

We work on wide range of strategic areas within the Energy & Utilities through our Praxis vertical

Macroeconomic evolution

- Sector perspectives
- Potential trends and sectoral impact
- Policy change and impact

Strategy and transformation

- Portfolio strategy
- Growth strategy
- 'Net zero' focus
- Go-to-market strategy

Growth and scale-up

- Micro-market evaluation
- End use segment growth (commercial & industrial)
- Adjacencies and new business opportunities (energy storage, charging infrastructure, green hydrogen etc.)
- Geographical expansion

Cost and performance excellence

- Economics improvement
- Capex improvement
- Operational and process Excellence
- Predictive maintenance forecasting

Customer loyalty and experience

- Customer loyalty and NPS improvement
- Value proposition improvement
- Retention management and churn reduction
- Sales acceleration

Investment advisory

- Commercial due diligence on targets
- Operational due diligence
- Exit thesis development
- Post deal value creation - 100 day plan

Enablement and implementation

- Change management
- Post merger integration
- Program management
 Office

Organization productivity

- Organization role span design
- Employee NPS & people value creation
- Attrition defence
- KPI cascade & performance management

Specific practitioner expertise

Madhur Singhal

Managing Partner & CEO, Mumbai Ex-Bain & Co., BCG MBA (IIM Ahmedabad), B. Tech. (IIT Delhi)

Ashutosh Somani

Principal, Gurugram

Ex-Auctus Advisors, i3 consulting, ZS Associates MBA (ISB Hyderabad), B.Tech. (IIT Roorkee)

Aryaman Tandon

Managing Partner & Practice Head - Energy & Utilities, Gurugram Ex-Bain & Co. B.Tech. (IIT Delhi)

Tanuj Lodhi

Manager, Mumbai
Ex-KPMG, NTPC
MBA (IIM Lucknow), B. Tech (IIT Guwahati)

Savio Monteiro

Sr Vice President, Energy & Utilities, Mumbai EX-KPMG, PwC, Feedback Infra, CRISIL MBA (Finance), M.A. (Economics)

Deep Ghose Dastidar

Consultant, Gurugram
PGDM (International Management Institute, Delhi)
B.Tech. (School of Engineering, Tezpur University)

we help our clients

We have partnered with India's largest consumer brands and have helped shape winning strategies in the continuously evolving retail landscape

Digital Transformation

Enabling our partners navigate the tectonic digital transformation to deliver growth and operational efficiency

Customer Insight & Brand Loyalty

Measuring and driving improvement in NPS scores and customer loyalty through detailed customer insights and proven frameworks

Cost Transformation

Identifying sustainable opportunities for profit improvement by focusing on strategic cost management

Process Re-engineering

Designing and implementing processes based on the principles of design thinking to enhance customer experience

Profitability and unit economics

Developing unit economics for any new product/market launch and driving profitability by operational efficiency

Growth and Scale Up

Growing fast and scaling up by optimizing client offerings, pricing, promotion, and distribution to the right target

Praxis Global Alliance

Build together. Win together.

100+
engagements
every year

60% lower costs

150+ team members

600+
years domain
expertise

30 practices

30% faster to outcomes

40 countries served

25-75 she/he ratio

We are the consulting firm of the FUTURE

- Full stack 'Knowledge services' provider:
 Consulting + Research + Data science + Talent
- 150+ team members, 3 offices, deep experience across sectors in India and SE Asia
- Unique 'Uber-like' Domain Partner led modelscaling aggressively
- Differentiated on Objectivity, 'Roll up the sleeves/Get-it-done' orientation and Value-for-money delivery model

Connect with us

We will be happy to share perspectives

Madhur Singhal
Managing Partner & CEO
Praxis Global Alliance

Aryaman Tandon
Managing Partner & Co-founder
Praxis Global Alliance

For media queries, please contact

Parul Singhh

Head - Corporate Communications E: communications@praxisga.com

M: +91 782 794 4926

Diksha Bhutani

Lead - PR & Communications

E: PR@praxisga.com M: +91 935 413 7148

New Delhi | Gurugram | Mumbai | Bengaluru

Stay Connected

Disclaimer: This material has been prepared by Praxis Global Alliance, which is the trade name of Praxian Global Private Limited ("Praxis") with the intent to showcase our capability and disseminate learnings to potential partners/clients. This material can be referred to by the viewers on the internet but should be referenced to Praxis Global Alliance, if reused or adapted in any forum. The frameworks, approaches, tools, analysis and opinions are solely Praxis's intellectual property and are a combination of collection of best data we could find publicly, and Praxis team's own experiences and observations.

We make no representation or warranty, express or implied, that such information is accurate or complete, and nothing contained in here can be construed as definitive predictions or forecasts. Before reading further, the Recipient expressly agrees that this might not address any and all risks and challenges facing Recipient, its business and the markets within which it operates, nor all possible market conditions. No responsibility or liability whatsoever is accepted by any person including Praxis or its Business partners and affiliates and their respective officers, employees or agents for any errors or omissions in this document.

Any and all logos of companies used in the post have been published for information purposes only and Praxis does not hold any and all liability in connection therewith.

This document is not complete without an accompanying oral discussion and presentation by Praxis though Praxis is not obligated to do so. Praxis does not have any duty to update or supplement any information in this document. Praxis shall not be responsible for any loss sustained by any person who relies on this presentation.

The team at

Appreciates your time and support #BuildTogetherWinTogether

