

Foreword

Data consumption in India primarily revolves around BFSI, Ecommerce, Social Media which together contribute to 75-80% of the total data consumption. The growth of smartphones in India over the last decade or so has also supplemented this growth in data consumption. However, data consumption in India on per capita basis is far lower than its Asian and Western Counterparts.

Data Center growth in India has been significant over the last 4-5 years with major investments from real estate players as well as from PE funds to set up various categories – Co-locations, hyperscale, managed services to Edge Data Centers etc.

In the report, we have discussed growth of Data Centers over the last few years along with type of Data Centers business models that have evolved over these years. We look at Colocation, managed services, hyperscale and Edge Data Centers and their key parameters. We also discuss where the key challenges and opportunities posed in the Data Center business.

Further we discuss the potential growth expected over the next few years in terms of revenue growth and IT power capacity growth, we also focus on the key parameters needed to selecting the location for Data Centers.

Lastly, we discuss about the key players in India and globally, their focus in the top 7 cities in India, their financial positions and margins seen in this business along with break up of cost structures and average monthly charges. We also touch upon policy and regulatory initiatives and key technological trends expected in the next 5 years including a global trend outlook.

The situation is evolving rapidly, and some of the expected scenarios might have slight variations. This report reflects our perspectives as of end of 2020.

Contact us for latest updates.

Madhur Singhal

Managing Partner & CEO

Magain

Aryaman Tandon

Managing Partner & Co-Founder

Key takeaways

- Data Centers growth in terms of IT power load capacity has witnessed a robust 18% CAGR between 2007 to 2020P, reaching about 430MW; in terms of real estate capacity, it has witnessed 13% CAGR growth during the same period.
- Going ahead, Data Center revenues are expected to clock about US\$ 4B by 2024E; while the IT power load capacity is
 expected to continue growing at a CAGR of almost 16% during the same period.
- Top 8 Data Center players account for above US\$ 6M sq. ft; while Mumbai currently accounts for about 50% of all Data Center building space in India.
- Demand for hyperscale Data Centers are growing rapidly and Captive Data Centers are moving towards 3rd party Co-Location (Colo) type Data Center business models.
- Domestic players are witnessing a CAGR growth of about 20%; Margin profiles becoming better with scale.
- Going ahead, key end use segments such as autonomous vehicles, Ecommerce, social media, connected devices etc., would drive the growth for Data Centers.

Data Center demand is primarily from large customers across industries such as IT, BFSI, social media and Ecommerce which require huge storage of customer data

IT/ITeS/Software

Require storage of large amount of confidential customer data of clients

Ecommerce

Require storage of customer-related data such as product views, card details, transaction history etc.

Manufacturing

Require storage of data related to equipment performance for predictive maintenance and for inventory management

Banking, Financial Services and Insurance (BFSI)

Require storage of sensitive information such as account details, transaction history etc.

Government

Require data storage capacity to store information of citizens for providing various services

Logistics

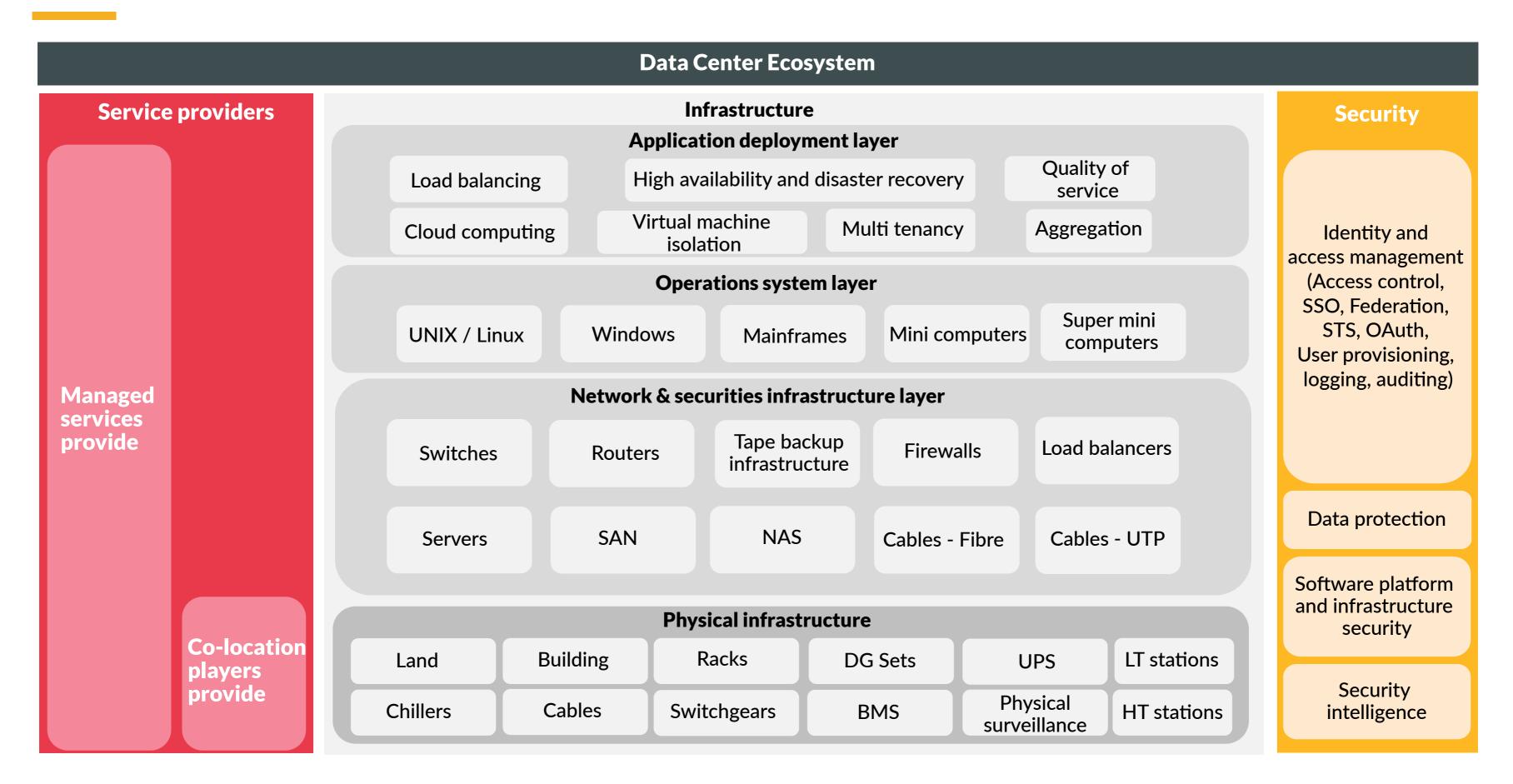
Require storage of data regarding product movement across the supply chain for effective tracking and pilferage reduction

Social media

Require storage of customer data, messages, photos, videos and other information such as transaction history

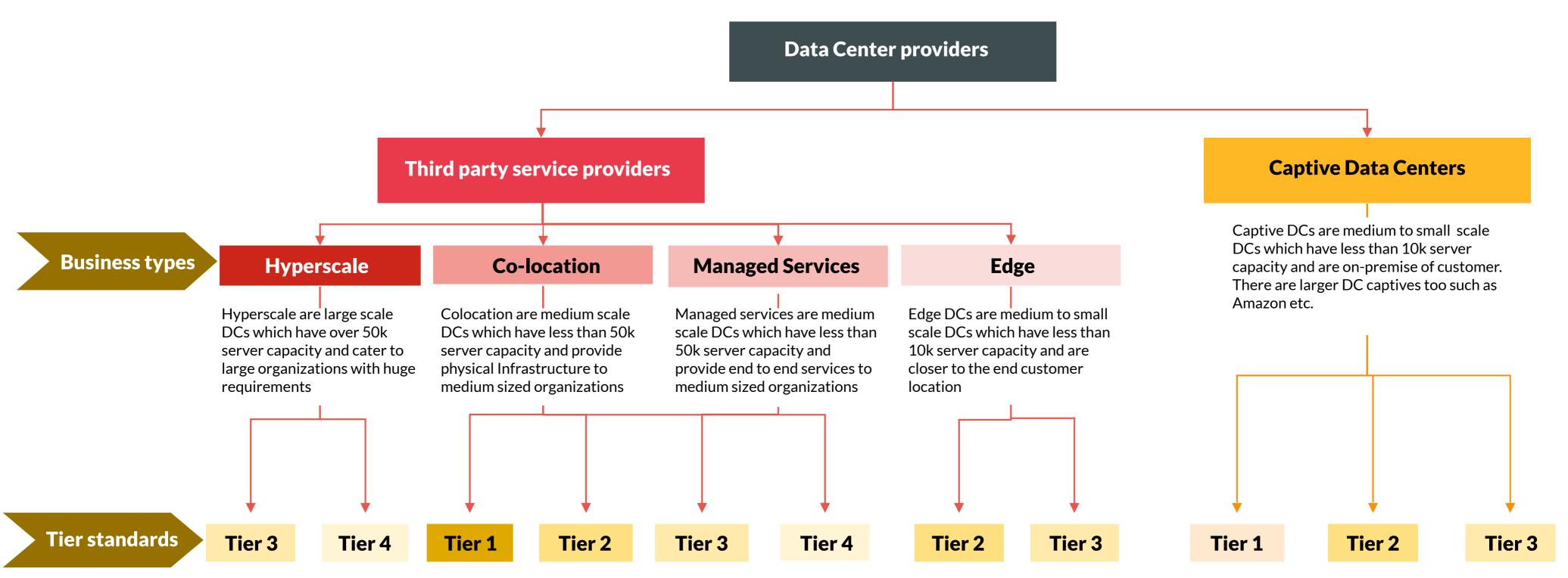
Telecom

Require data storage space for providing internet services to their customers and for storing required customer information


Healthcare

Require storage of patient medical records and other clinical data for security and regulatory purposes

Sources: Secondary research, Praxis analysis



Data Center ecosystem technology stack

Third party Data Center service providers form a key share for business types with tier 3 and 4 being the key service standards

- Tier 1 standard category provides basic services to end customer and non-redundant capacity
- Tier 2 standard category provides redundant capacity to the end customer to avoid failure
- Tier 3 standard category provides concurrently maintainable capacity to reduce failure and faults considerably
- Tier 4 standard category provides fault tolerant capacity to eliminate failure and faults.

© Praxis Global Alliance

Based on planning and design parameters, Data Centers can be classified to hyperscale, colocation, managed services and Edge Data Centers

		Third par	rty service providers			Captive
	Hyperscale	Colocation	Managed Se	ervices	Edge	
			Planning			
Location	 Well-planned and located in hubs on outskirts where land is cheaper 	 Well-planned and located land is cheaper 	in hubs on outskirts where	 Located within ciare the customer 	ties near business hubs which s of Data Centers	Location at the clients' premises
Building type	 Well-planned and located in hubs on outskirts where land is cheaper 	 Dedicated buildings with Physical infrastructure with Plug and play 	 Dedicated buildings with fully-integrated support including servers etc. 		or parts of a building other offices, Data Centers etc.	Smaller buildings compared to co-located and managed services
Proximity to end users	 Located on outskirts of cities, usually far from the business areas 	 Located on outskirts of cit business areas 	ies, usually far from the	 Located very clos 	se to end-users	On-premises
Latency	 Low to medium latency based upon distance from the end-user 	 Low to medium latency ba end-user 	sed upon distance from the	 Very low latency 		• Low latency
			Server Design			
Visibility	 High visibility for end-users on critical Data Center parameters 	 High visibility for end-user parameters such as peak s consumption etc. 		 Low visibility for critical Data Cent 		 High visibility for clients
Size	• At least 50K servers	• Less than 50K servers		• Less than 10K ser	rvers	 Less than 10K servers, how- ever some large captive Data Centers exist
Customer types	 Large organizations with heavy data storage requirements 	 Medium-to-large scale organizations bringing their own servers 	 Medium-to-large scale organizations with end to end requirements 	 Organizations wi requirement for I latency. 	,	 Organizations with less requirement but low latency

Notes: 1 Rack contains 40-80 servers **Sources:** Secondary research, Praxis analysis

Offerings of a Data Center (DC) range from completely Data Center owned infrastructure model to managing customer in-house Data Center

		Data Center owned and maintained	Customer-owned Data Center ho	Customer in-house (managed service)	
			DC-maintained	Customer-maintained	
Definition		 DC provides infrastructure, management & shared / dedicated servers 	 Customers own the servers but outsource management & infrastructure 	 Customers own the servers and maintain them but rent infrastructure (power, space connectivity) 	applications are managed
Key customer segments		 Cloud Service users (Small Organizations) 	 Small to Medium Scale Organizations 	 Small to Medium Scale Organizations 	 Major IT firms, Large Scale Organizations
Managemen	t (People)				
Assets (Hardware, servers)					
Location (Ph	ysical space)				
	Electrical setup/cooling				
	Physical security				
Enablers	Logical security				
	Service desk				
	Monitoring				
	Network/connectivity				

Provided by DC Optional / partial Not provided by DC

Sources: Secondary research, Praxis analysis

Optional / partial Not provided by DC

© Praxis Global Alliance 08

Data Centers are further classified into 4 standard tiers categories according to their service levels. Players are now focusing on tier 4 fault tolerant DCs

Parameters	Tier 1	Tier 2	Tier 3	Tier 4
Category	Non-Redundant Capacity	Redundant Capacity	Concurrently Maintainable	Fault Tolerant
Uptime per annum (Downtime per annum)	99.67% (28.8 hours Per annum)	99.74% (22 hours Per annum)	99.98% (1.6 hour per annum)	99.995% (0.4 hour per annum)
Capacity components to support the IT Load	N	N+1	N+1	2N+1
Power Outage Protection	-	-	72 hour protection	96 hour protection
Cooling	Single cooling path	Single cooling path	Multiple cooling paths	Multiple cooling paths (Continuous cooling)
Months to implement	3	3-6	15-20	18-24
Target customer	Small Business	Small Enterprise	Large Enterprise	Very Large Org/MNC
Key players in India	Small Scale Data Centers	Small Scale Data Centers	RELIANCE STTElemedia Communications Global Data Centres (In netmagic NTT Natradata SMART SECURE RELIABLE	P° YOTTA

Increasing data requirement and data creation due to internet penetration pushing growth for Data Centers

Tailwinds for Data Centers growth in India

Government's policy push for Data Center infrastructure development through MeitY's Data Center Policy 2020 to further attract investment in the sector. Other states such as Telangana and Uttar Pradesh have also unveiled their Data Center policies

Projected growth in internet and smartphone penetration, BFSI, E-Commerce and Social media in India are currently driving the data consumption and increasing in Data Center requirement

With strong push by government, start-ups such as RackBank have set up hyperscale Data Centers and providing services to small and fast-growing customers

Increasing Govt. internet initiatives penetration & data creation

> **Growth of** technology-

Rapid growth in tech-focused start-ups conducting research in advanced areas such as IoT, autonomous vehicles, Digital transformation etc. is expected to drive future Data Center growth

Future initiatives by Govt to ensure data of India consumers stored on Indian servers by companies would drive the Data Center demand considerably

Push for data localisation

Start-up

activity

in data

centers

Increasing cloud adoption

focused

start-ups

Increasing number of small and medium-sized firms opting for cloud storage as compared to in-house servers increasing 3rd party Data Center demand

© Praxis Global Alliance 1 Sources: Secondary research. Praxis analysis

Laaddaladd

Land assessment, power-related issues and approval delays are key challenges for Data Centers

Sea cable

connectivity

Headwinds facing Data Centers in India

Power

backup

Sea cable fiber connectivity has not yet penetrated the hinterland where Tier 2 cities are located, thereby restricting Data Centers to the top 7-8 cities / metros in India

Power availability and quality continue to be erratic in some parts of the country, which requires Data Centers to always maintain a power backup source to ensure uninterrupted operations

Data Centers in India are currently concentrated in areas like Mumbai, Chennai and Bangalore, which have substantially high real estate cost as compared to Tier 2 cities

High real estate cost

Data

security

Approval delays

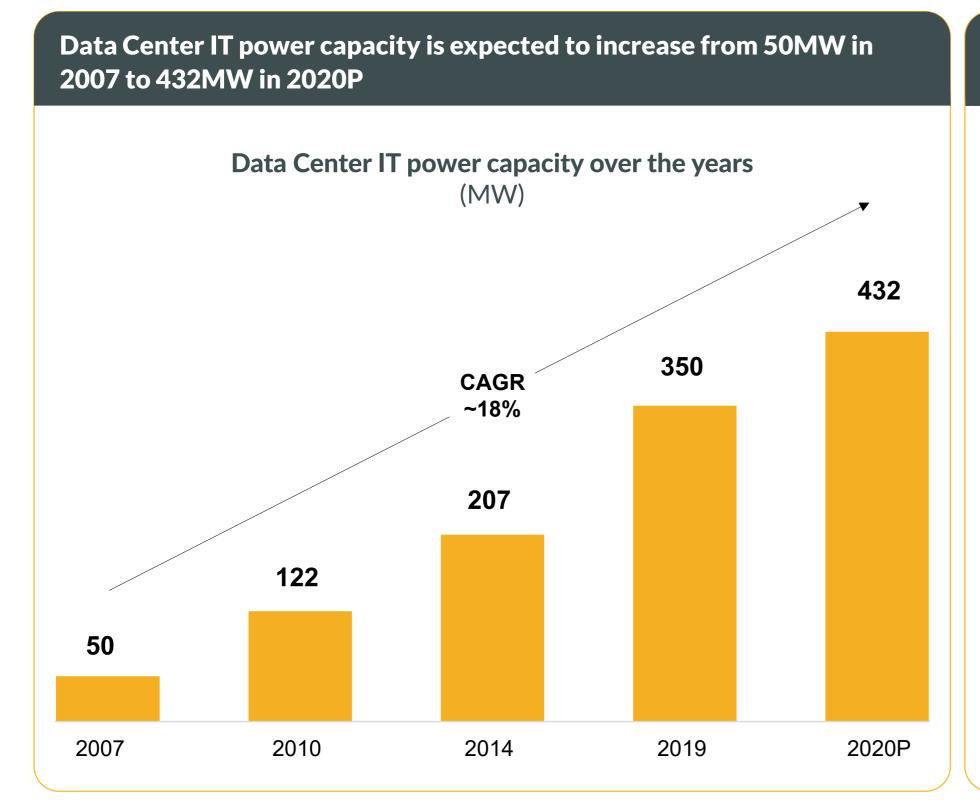
Land

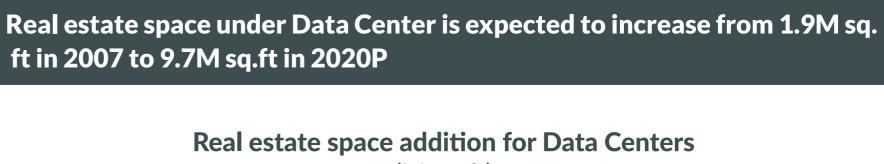
assessment

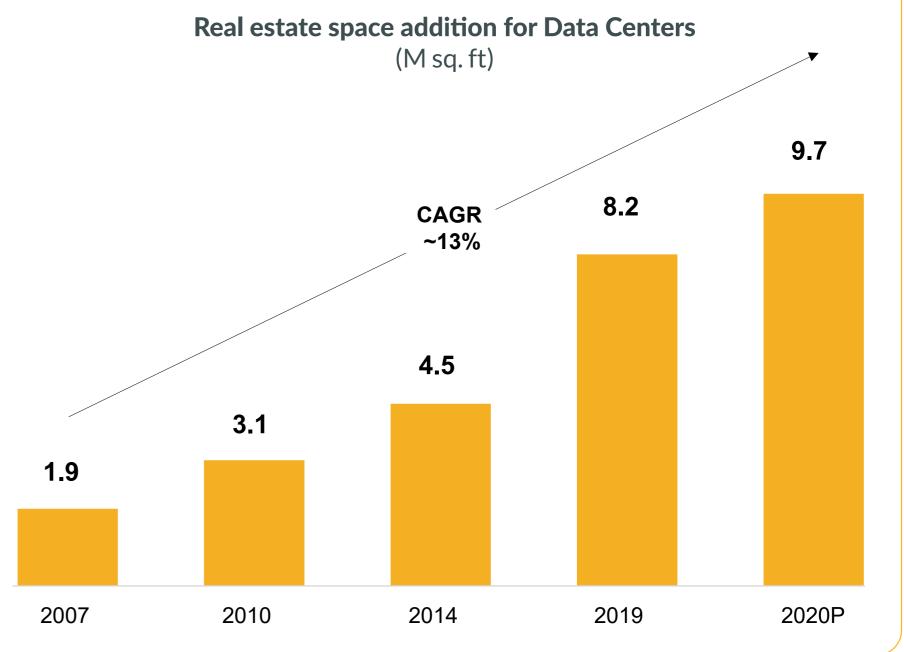
Requirement of large tract of land with good availability of power, water and fiber cable connectivity, and without any presence of industries in the vicinity which can cause vibrations or have potential for disaster

Co-location & managed service Data Centers in India store, manage and process massive chunks of data, making Data Center facilities vulnerable to security risks.

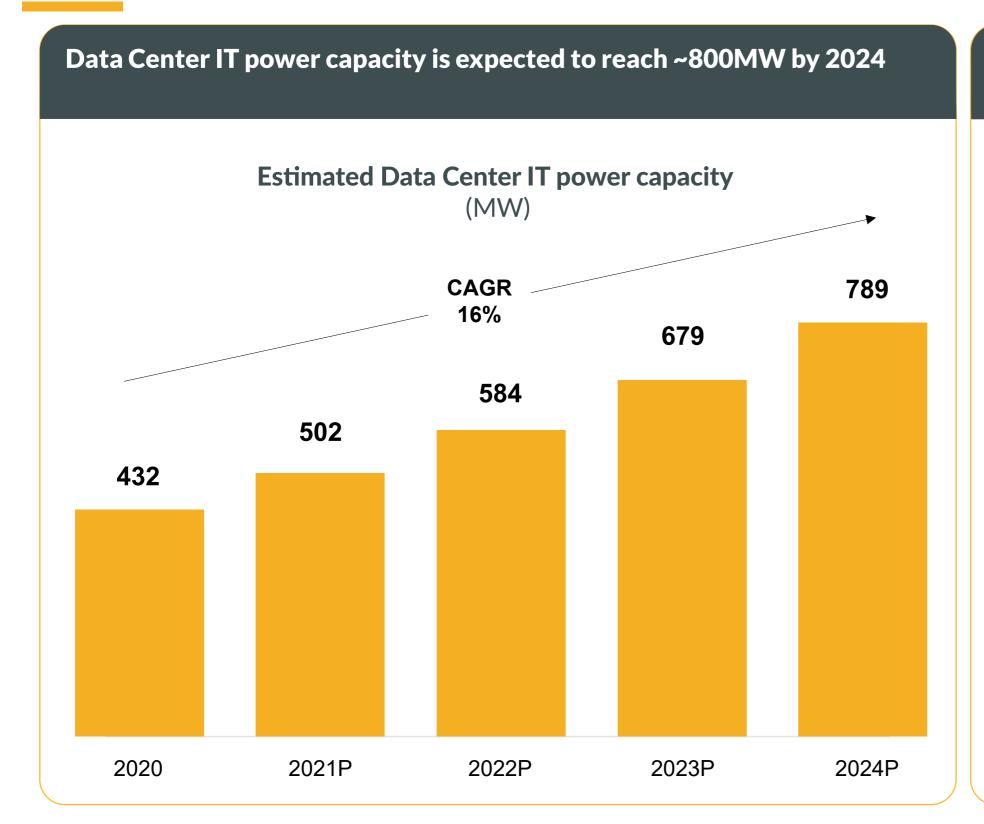
High number of approvals required for a Data Center to go live, leads to higher time requirement for players to start their operations

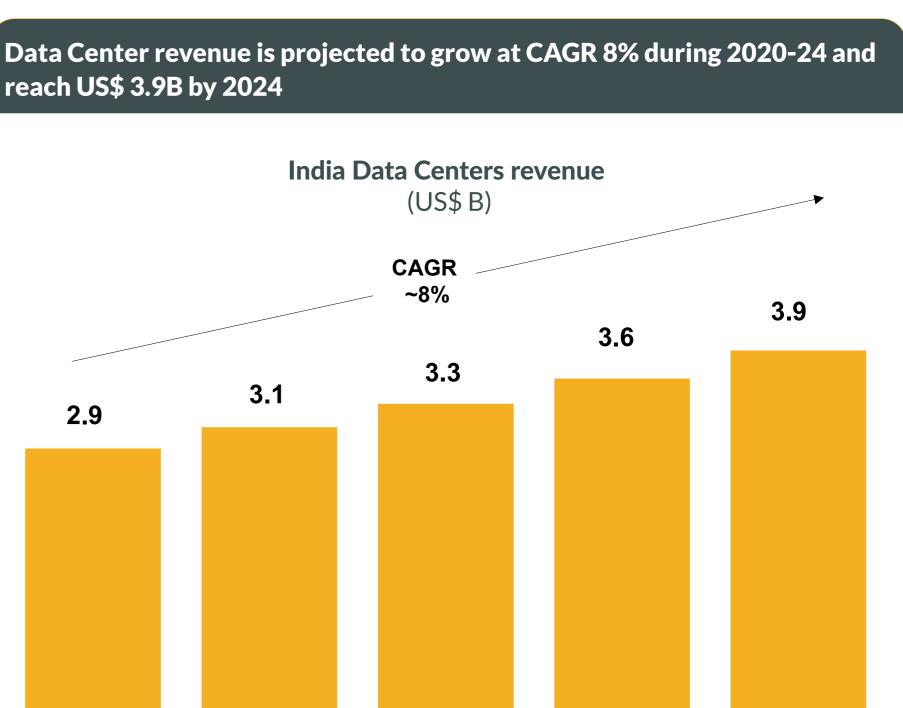



Sources: Secondary research, Praxis analysis


Tradidiatd

Data Center capacity has grown significantly over the last decade





In India, Data Center IT power capacity is expected to reach about 800MW by 2024; while revenues are expected to reach about US\$ 4B by 2024

2020

2021P

2022P

2023P

2024P

Land availability parameters for Data Centers

No Vibrations and low potential for disaster

Regions where there are less vibrations or potential for fire / destruction due to heavy construction / industries nearby.

Low flooding potential

Regions that are near sea-coast but are not threatened by flooding

Stable power supply

Regions with abundant supply of high-quality power

Cheaper land

Regions with availability of vast tracts of land available at cheaper prices

Access to fibre cable connectivity

Regions with access to high-speed sea/optic fibre cables for unrestricted connectivity

Disaster avoidance

Regions which do not fall in high seismic zone and high velocity winds

Transport accessibility

Regions with good connectivity for easier access for operations and maintenance staff

Climate conditions

Regions with moderate climate ensuring lower temperatures for effective data center operations

Socio-economic and Government criteria

Availability of construction & sustaining workforce, taxation and incentives

Sources: Secondary research, Praxis analysis

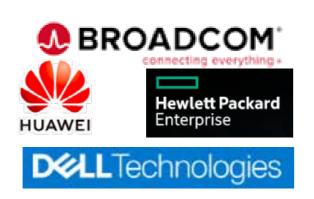
Data Center ecosystem (India + Global)

Data hosting centers

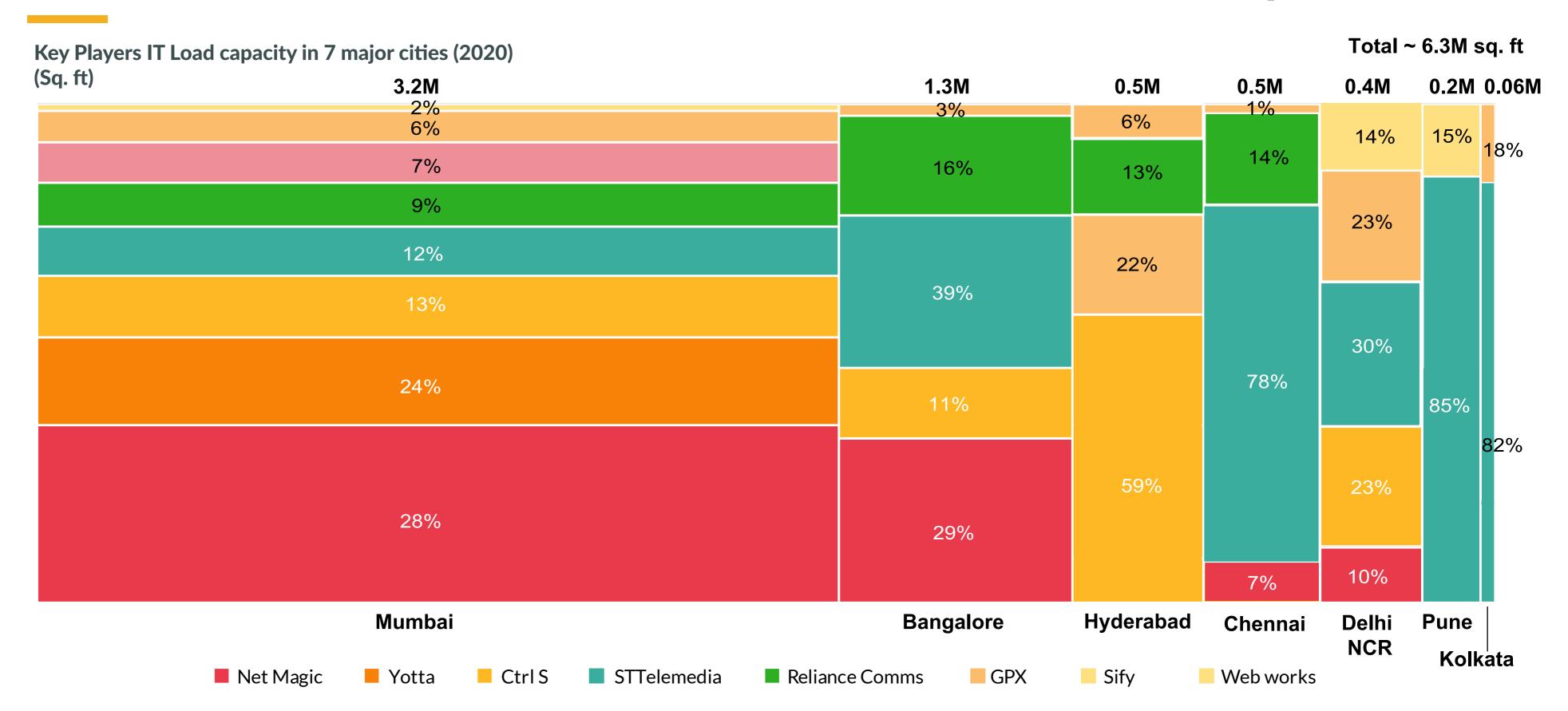
Co-location / Hyperscale / Edge

Captive

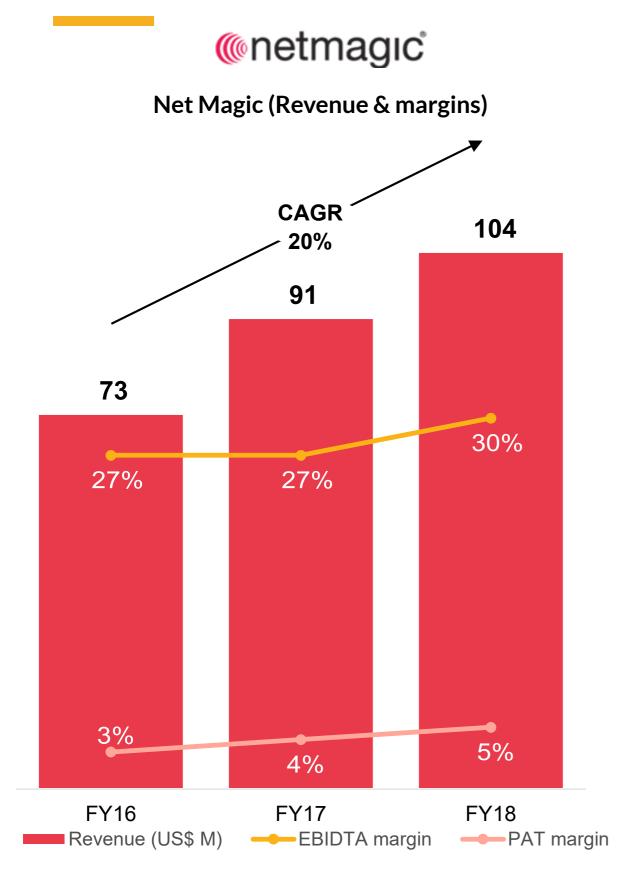
Cognizant

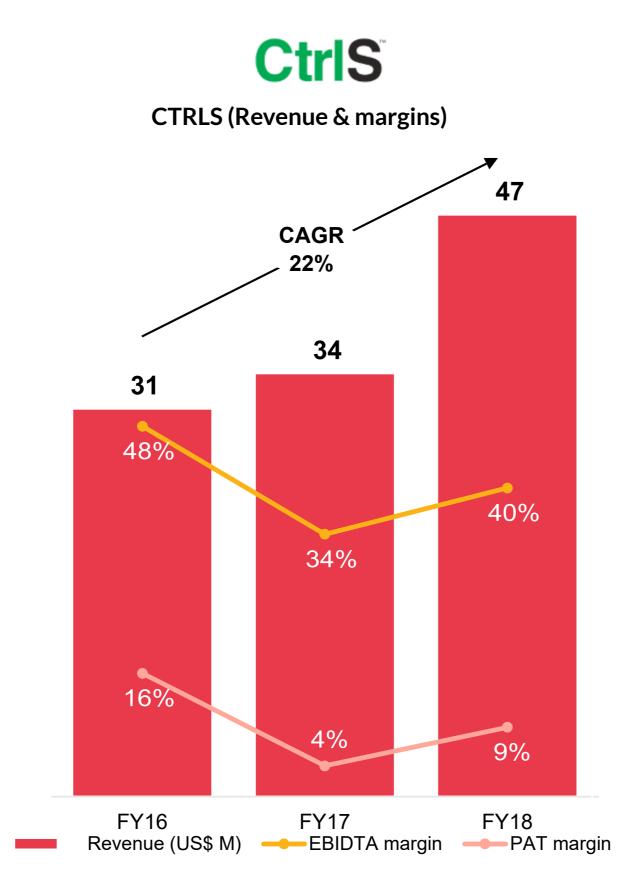

Cloud service providers

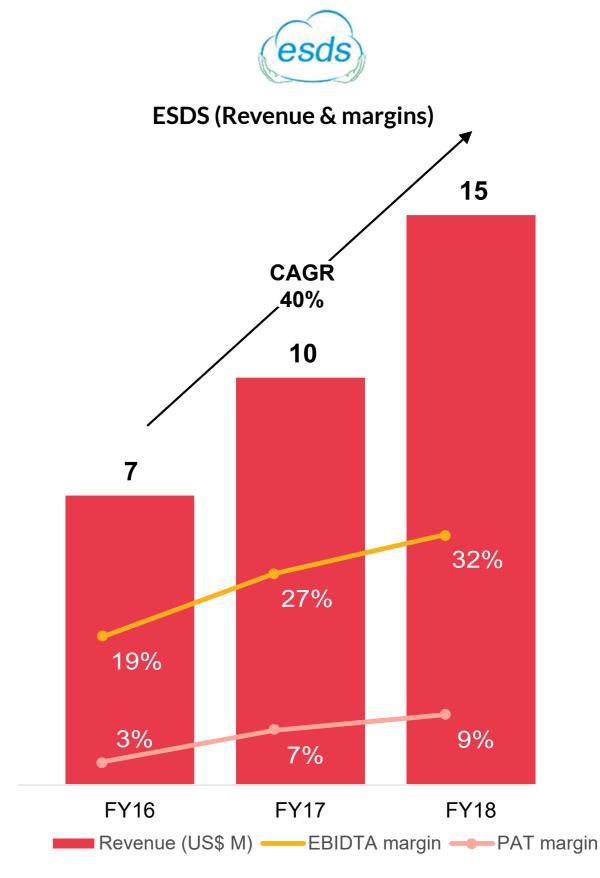
Support infrastructure providers


PE investments in the Data Centers in India witnessed a large spike in 2020

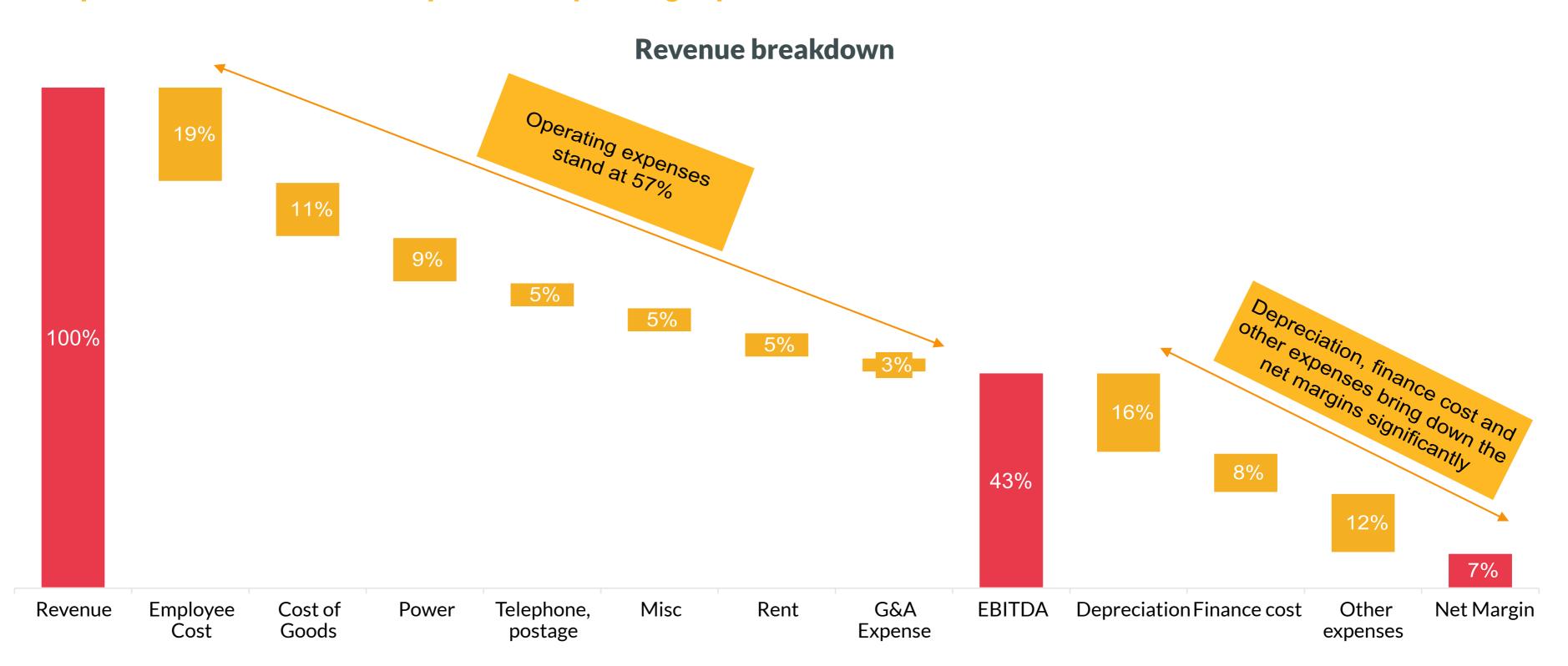
Data Center Company	Year	Investment (US\$)	Type of investment (Funding Round)	Key Investor	Acquisition
nxtradata SMART. SECURE. RELIABLE	2020	235M	Series D	THE CARLYLE GROUP GLOBAL ALTERNATIVE ASSET MANAGEMENT	-
GPX	2020	161M	Acquisition	-	EQUINIX MAGES OFFICER ACTY CONNECTS
CtrlS	2008	50M	PE	OCH-ZIFF CAPITAL MANAGEMENT GROUP	-
@netmagic*	2010	15.7M	Series B	Nexus investments venture partners 8° EIGHT ROADS"	-
NxtGen7	2015	13.5M	Series B	🛕 Altira.	-
esds	2015	4M	Series A	GEF CAPITAL PARTNERS CANBANK VC	-
	2016	11.8M	Series A	Epsilon Venture Partners	-
cyfuture	2016	219K	Seed	RAJASTHAN VENTURE CAPITAL FUNC	-

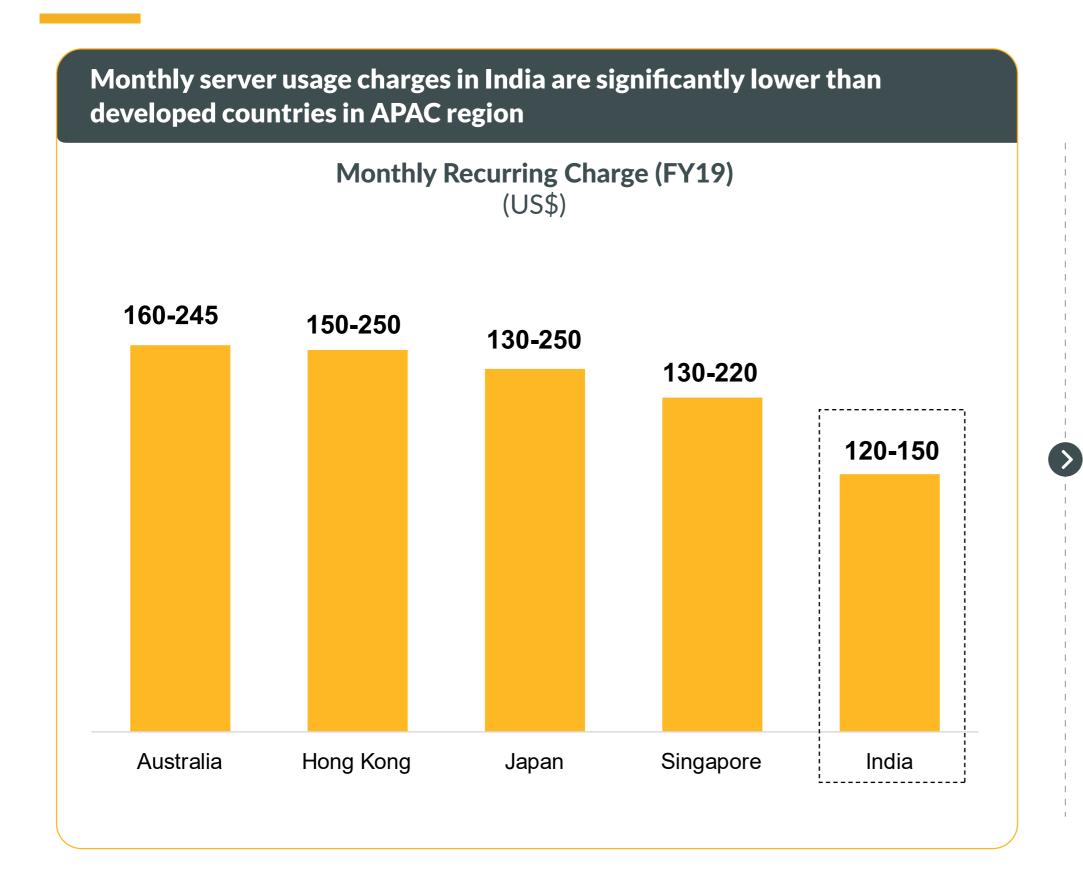



Top 8 Data Center players account for the bulk share of Data Center space in India; Mumbai accounts for about 50% of the total Data Center space



Domestic players have been growing at higher CAGR of about 20%; Margin profiles becoming better with scale




Typical cost structure: Operating expenses constitutes ~57% of the revenue; High depreciation cost due to capex heavy nature of the business

People and Power costs make up ~50% of operating expenses

India has lower average monthly charges than other developed countries due to lower cost and increasing demand

Reasons for India's competitive advantage

Real estate cost: Commercial real estate prices in India are lower than prices in developed countries

Skilled and lower manpower cost: Lower cost of manpower for setting up and managing server infrastructure

High demand growth: Significant increase in data consumption driven by lower data cost and increasing internet penetration in the country

Ability to act as a hub for the region: India's position in South Asian region and availability of sea cable connectivity in key cities enabling it to act as a Data Center hub for the region

India's draft Data Center policy aims at creating a sustainable ecosystem for data center players with supporting infrastructure and skilled manpower availability

Theme	Reform	Description
	Infrastructure status for Data Centers	 Infrastructure status in line with sectors like Railways, Power etc. would enable Data Center players to avail long-term credit from lenders at easier terms
	Single window clearance	Single window clearance for interested players to enable time-bound approvals
Enabling Ease of Doing Business	Data Center parks	 Promote pre-provisioned Data Center parks to enable plug and play model for Data Center providers, and ensure access to land parcel, power at low rates, high-capacity network, and pre-approved clearances
	Data Center Incentivization Scheme	• Fiscal and non-fiscal incentives for Data Center players on usage of domestic IT hardware and other non-IT equipment
		Uninterrupted power supply availability at reasonable rates
Ecosystem for data	High quality power availability	Facilitate RE generation within the premises of Data Centers
center operations		Facilitate open access for Data Centers to directly procure electricity from RE plants
	Robust connectivity	 Facilitate establishment of captive fiber networks for connecting Data Centers, and ensuring lower bandwidth cost for Data Centers
Data Center	Data Center ecosystem creation	 Government to set up at least 4 specialized Data Center Economic Zones with conducive IT and non-IT infrastructure, connectivity, power and regulatory ecosystem
Economic Zones		 Would lead to having hyperscale Data Centers, cloud service providers, R&D firms and IT firms at a single place
Technology and research	Indigenous manufacturing	 Fiscal incentives for Indian players to manufacture Data Center related IT and non-IT hardware and software products Incentivizing global manufacturers to set up manufacturing units in India
	Capacity building	 Skill development and upgradation initiatives to create a trained workforce for Data Center operations and maintenance


Sources: Data Center Policy 2020 by MeitY, Secondary research, Praxis analysis

Upcoming technologies related to IoT, AI/ML, predictive maintenance and big data would increase the demand for Data Centers

End-use	Description	Drivers of growth	
Autonomous vehicles	 Autonomous vehicle requires continuous generation of data that needs to be processed for the vehicles to navigate safely on the roads Average self-driving private car would generate 1-15 TB/ day whereas shared mobility vehicles 	 Improved comfort of driving and potential to reduce accidents related to human error 	
	will generate up to 450 TB/ day		
Automated warehouses	 Automated warehouses that require lesser manpower and offer higher efficiency will require generation and processing of data on a continuous basis 	 Improved efficiency of operations 	
Big data	 Use of more data to understand customer behavior and trends for organizations to take decisions would lead to higher requirement of data storage space 	 Ability to generate improved insights on consumers 	
Connected devices	 IoT-enabled connected devices require huge amount of data to be screened and analyzed where it is generated 	 Higher control over equipment and improved comfort of remote 	
	 Smart homes are one of the fastest growing segments which has the potential to generate huge amount of data 	management	
Predictive maintenance	 Regular storage of data regarding operational parameters of equipment and devices to ensure identification of potential defects 	 Ability of predictive maintenance to reduce potential downtime for 	
	 Companies with complex manufacturing/production equipment that have higher downtime-related costs would invest more in predictive maintenance technology 	the equipment	
Smart cities	Smart cities would have multiple data collection devices across the city which would collect and process huge amount of data to provide the required services to the citizens	Policy measures by government	
Social media	 Increase in smartphone and internet penetration will lead to higher usage of social media platforms requiring higher data storage requirements 	 Increase in internet and smartphone penetration 	
Ecommerce	 Increase in smartphone and internet penetration will lead to higher penetration of Ecommerce in the overall purchases made by the people 	 Increase in internet and smartphone penetration 	

Sources: Data Center Policy 2020 by MeitY, Secondary research, Praxis analysis

Key global trends to monitor in this segment

	Drivers	Outcome
Demand for hyperscale Data Centers	 Increasing requirement of hyperscale Data Centers due to increased computing power requirement and need for scalable solutions 	 500+ hyperscale Data Centers in existence 100 of them have come up in past 2 years
2 Move towards cloud	 80% of enterprises are expected to eliminate traditional Data Centers by 2025 as compared to ~10% in 2019 	 Companies switching to cloud services and abandoning in-house physical servers
Growth of 5G and Edge DCs	 Data Centers moving closer to consumers due to increasing requirement of lower latency for higher customer satisfaction Growth of 5G to further increase data speed and internet penetration 	 Emergence of decentralized, smaller-scale Data Centers within cities near customers at the edge of network to reduce latency
Emergence of Green Data Centers	 Cooling makes up 30-40% of energy consumption of Data Centers Climate change issues & increasing energy consumption leading to emergence of energy-efficient Data Centers 	 AI/ML driven dynamic regulation of temperature Direct to chip & full immersion liquid cooling solutions On-site RE power generation to reduce dependence on DGs
Use of solid state drives for data storage	 Lower space requirement and lower power consumption by solid state drives as compared to hard disk drives Decreasing cost of solid state drives 	 Increasing adoption of solid state drives across Data Centers globally
Remote monitoring & management of Data Centers	 Covid-19 pandemic had resulted in shortage of manpower for physical monitoring and management for Data Centers. 	 RIM (Remote Infrastructure Management) is gaining traction whereby the IT infrastructure of a company can be managed either entirely or in parts via a remote location.

Specific practitioner expertise

Madhur Singhal

Managing Partner & CEO

Arindam Bhattacharjee

Domain LeaderData Center, Infrastructure

Aryaman Tandon

Practice Leader Infrastructure

Savio Monteiro

Sr Vice President Infrastructure

For queries, please contact

Parul Singhh

Head- Corporate Communications communications@praxisga.com

we help our clients

We have partnered with India's largest consumer brands and have helped shape winning strategies in the continuously evolving retail landscape

Digital Transformation

Enabling our partners navigate the tectonic digital transformation to deliver growth and operational efficiency

Customer Insight & Brand Loyalty

Measuring and driving improvement in NPS scores and customer loyalty through detailed customer insights and proven frameworks

Cost Transformation

Identifying sustainable opportunities for profit improvement by focusing on strategic cost management

Process Re-engineering

Designing and implementing processes based on the principles of design thinking to enhance customer experience

Profitability and unit economics

Developing unit economics for any new product / market launch and driving profitability by operational efficiency

Growth and Scale Up

Growing fast and scaling up by optimizing client offerings, pricing, promotion, and distribution to the right target

The team at

Appreciates your time and support

#BuildTogetherWinTogether

